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Abstraet-ln this paper. the development of an energy-based anisotropic damage model at finite
strains for ductile fracture is described. The constitutive model is developed within the general
framework of continuum thermodynamics for irreversihle processes by identifying a proper set of
internal variables together with their associated generalized forces. Three major anisotropies are
considered. including anisotropic elasticity, anisotropic plasticity and anisotropic damage. The
physical implications, mathematical restrictions. and numerical implementations, as well as practical
applications are discussed in some detail. Attention is focused on the development of a new damage
characteristic tensor which is based on the hypothesis of damage energy equivalence and provides
a good physical representation of damage evolution. An approach is also presented to account for
microcrack opening and closing. A viscoplastic regularization algorithm is proposed to take into
account the strain rate effect and to improve numerical stahility. The numerical implementation is
described in detail. In particular. a new and simple two-step operator split algorithm (elastic
predictor and coupled plastic-damage corrector) with suhincrements is developed which can
etliciently integrate fully coupled elastoplastic damage constitutive relations. Numerical results are
presented for sheet forming processes. Good agrecment with some theoretical and experimental
results is also ohtained.

I. INTRODUCTION

It is well-known that most structural materials exhibit some degree of anisotropy. Some
materials, such as fibrous composites, polymers and timber are naturally anisotropic. In
sheet forming in particular, the effect of anisotropy on the deformation characteristics may
be appreciable and important, because the sheets are usually cold-rolled and possess differ­
ent properties in rolling and transverse directions (Kobayashi el al., 1989).

Recent experimental evidence indicates that structural failures are often associated
with the development of anisotropic material damage even if the initial material properties
are isotropic. In fact, anisotropy of damage is supported by microscopic observations:
microvoids or microcracks extend more on planes normal to the maximum principal stress
axis. The importance of the directional nature of material damage in controlling final
rupture becomes more pronounced under non-proportional service loadings (Chaboche,
1987). An analysis without taking into account the damage-induced material anisotropy
may therefore yield questionable results. This has prompted several researches to investigate
the general case of anisotropic damage.

Instead of using scalar damage variables for isotropic damage models (Lemaitre,
1985), a number of anisotropic damage models have been developed incorporating sep­
arately vectors and tensors of second order or higher ranks as state variables characterizing
anisotropic damage.

tFormerly a doctoral student at Departement MSM. Universite de Liege. Belgium.
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One of the first works was developed by Cordebois and Sidoroff (1979 and 1982) and
Cordebois (1983). They have proposed an anisotropic ductile plastic damage model based
on elastic energy equivalence. Later, Lee et at. (1985) used this model to predict the forming
limits of an anisotropic metal plate with a new damage criterion for deformation instability.
However, in this model, the damage effect tensor M for the effective stress equation and
the damage characteristic tensor I developed for the damage evolution rule were limited to

. a few special cases with a priori knowledge of principal stress/strain directions. For solutions
of most practical engineering problems, this requirement is too restrictive.

The modification which removes this restriction was proposed by Chow and Wang
(1987, 1988, 1991) by introducing a generalized damage effect tensor M and appropriate
coordinate transformation for the tensor. Recently, Voyiadjis and Katton (1990, 1992)
have extended this version to large strain analysis. However, the criterion of damage
evolution is based on "effective damage stress" in the above works. The physical significance
is not clear and may violate the thermodynamic rules, because the thermodynamic conjugate
force of the damage tensor 12 is assumed to be the stress tensorrz.

In order to avoid this drawback, Chow and Lu (1989a, b) and Lu and Chow (1990)
returned to use the energy based criterion of damage evolution which was originally
proposed by Cordebois and Sidoroff (1982, 1983), but with a new damage characteristic
tensor l Identification of I is simple enough (it involves only one unknown parameter) to
be determined from a standard tensile test. However, this new version of the anisotropic
damage model is only suited to the case when the initial material properties are isotropic.

Another anisotropic damage model proposed by Simo and Iu (1987a, b) and Iu (1989a,
b, 1990b) should be mentioned. In this model, the free energy involved in the plastic flow
and damaging processes is coupled explicitly. However it is difficult to express the criterion
of damage evolution with a unified form because uncoupled treatment of damage and
plasticity is not an easy task.

In this paper, the energy based anisotropic damage model proposed originally by
Cordebois and Sidoroff (1979, 1982) and Cordebois (1983) is extended with some special
considerations:

(1) three major anisotropies are taken into account, including: anisotropic elasticity,
anisotropic plasticity and anisotropic damage;

(2) the generalized damage effect tensor M proposed by Chow and Wang, 1987 is
used;

(3) a generalized coordinate transformation between the material principal axes and
reference coordinate axes is suggested;

(4) a new damage characteristic tensor I based on the hypothesis of damage energy
equivalence is proposed;

(5) microcrack opening and closing mechanism is considered thanks to different effects
of tensile and compressive states;

(6) the viscous regularization of the rate-independent damage model to take into
account the effect of strain rate and to improve the numerical convergence is made;

(7) finally, an effective computational integration algorithm with two step split oper­
ators is proposed.

2. CHARACTERIZATION OF ANISOTROPIC DAMAGE

2.1. Effective stress and damage effect tensor M (D)
One basic hypothesis in most isotropic and anisotropic models of continuum damage

mechanics is that, neglecting the details of microscopic damage growth, damage can be
viewed as a macroscopic state variable which affects the average microscopic damage
growth in the sense of "effective stress". This basic hypothesis of effective stress can be
stated this way: there exists a "damage effect tensor" M(12) applied to the stress tensor Q

which defines the effective stress tensor i! (Chaboche, 1981, 1984), that is:
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(1)

where the damage effect tensor M (Q) is a second-order or fourth-order tensor depending
on the damage tensor 12. Note that four fundamental variables of continuum damage
mechanics have been introduced in the foregoing hypothesis, i.e. the damage tensor 12, the
damage effect tensor M(12), the effective stress tensor ct and effective strain tensor f·

Damage induced material anisotropy may be characterized by a symmetric second­
order tensor 12. Because of its mathematical simplicity, 12 has been used extensively to study
various aspects of damage problems including elasticity (Cordebois and Sidoroff 1979;
Chow and Wang 1987; Valliappan et al. 1990), elastoplasticity (Cordebois and Sidoroff
1982; Cordebois, 1983; Lee et al., 1985) and elasto-visco-plasticity (Saaouni et al., 1989).
Perhaps the most attractive property of 12 is that it always possesses three orthogonal
principal directions and the corresponding principal values (Lu and Chow 1990).

There is no uniquely defined mathematical formulation of M(Q) and indeed various
formulations have been proposed (Chow and Lu, 1989a). One of the simplest forms is to
introduce material damage in the stress tensor principal directions only (Cordebois and
Sidoroff, 1979, Lee et al., 1985):

(2a)

with the second order of damage effect tensor:

I-D]
0 0

1
M(Q) = 0 -- 0

I-D 2

1
0 0 --

I-D 3

(2b)

where Db D 2 and D 3 are damage variables in their principal axes. However, when the
directions of the principal stresses are unknown, the damage effect tensor (2b) must be
suitably modified. One obvious criterion for developing such a generalized form of the
damage effect tensor is that it should reduce to a scalar for isotropic damage. This reduction
should be made possible not only in a principal coordinate system but also in any coordinate
system.

One formulation which satisfies the above criterion was proposed by Chow and Wang
(1987), in the principal coordinate system of damage as:

(3a)

with the fourth rank symmetric tensor:

It is obvious that (2) is a particular case of (3) which can be readily reduced to a scalar for
isotropic damage when D] = D 2 = D 3 = D. Because the generalized damage effect tensor
M (D) in eqn (3) can be applied to solve common structural engineering problems (Jubran
and Cofter 1991), it will be used to derive the constitutive equations of the present aniso­
tropic damage model.
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2.2. Hypothesis ofenergy equivalence
Instead of the conventional postulate of strain or stress equivalence which has rather

limited ability in the establishment of constitutive equations of materials suffering from
progressive deterioration especially when anisotropic damage is involved, an hypothesis of
energy equivalence was proposed by Cordebois and Sidoroff (1979, 1982) which states that
the complementary elastic energy for a damaged material has the same form as that of a
fictitious undamaged material except that the stress is replaced by the effective stress in the
energy formulation. Mathematically,

or

! - T C - I - _! TC- - I
2~~e~-2~_e~

(4a)

(4b)

where ~e and Qe are the virgin and damaged elastic material stiffness tensors respectively.
By recalling (1), it can be easily proved that:

(5)

and according to the hypothesis of energy equivalence the effective elastic strain vector is

(6)

where:

M- 1 = diag

3. GENERAL THERMODYNAMIC ANALYSIS

3.1. State variables
The internal variables to be used in the thermodynamic analysis are listed, together

with their associated thermodynamic forces, in Table 1. The general structure of the
constitutive equations is furnished by the well-established thermodynamic theory of irre­
versible processes with such state variables. Hereafter, isothermal condition is assumed.

3.2. Thermodynamic potential
As it has been indicated in Lemaitre (1985), uncoupled plasticity and elasticity is

assumed such that the elastic properties depend only on damage variables and not on the
dislocation density r:J.. For practical purposes, another hypothesis is introduced: energies
involved in plastic flow and damage processes, dissipated by heat or stored in the material
due to hardening, are independent. Consequently, in the present model, the Helmholtz free
energy takes the following form (Lu and Chow, 1990):

Table 1. State variables and associated thermodynamic forces

State variables

Elastic strain E,

Accumulated plastic strain ex
Damage variable D = (D\, Db D J)

Overall damage f3-
Temperature T

Associated thermodynamic forces

Cauchy stress (J

Plastic hardenmg threshold R
Damage energy release rate Y = (Y" Y2, Y,)
Damage strengthening threshold B
Entropy S
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(8)

where We~., [2) is the elastic strain energy, t/Jp (IX) the free energy due to plastic hardening
and t/Jd (f3) the free energy due to damage hardening. The complementary energy is obtained
from the Legendre transformation of the free energy with respect to strain, i.e.

According to the energy equivalence hypothesis, the elastic strain energy We (!'., mand the
complementary elastic energy We (Q, mcan be evaluated as:

(lOa)

(lOb)

Following the rules of thermodynamics of irreversible processes, the associated ther­
modynamic forces are given by:

at/J at/Jif3)
B=p-=--

af3 af3

at/J arr aWe(Q:,Q) T -I aM
X=Pan= -P an = - an = -Q: Mfe anQ:· (11 )

The negative of X can be considered as the elastic strain energy rate associated with a unit
damage increment as it is easy to show that:

1 dWeJ
- X = 2" (dQ) atconstant.":·

(l2)

X is often given the name of "damage energy release rate" in view of the energy relation in
eqn (12) (Lemaitre and Chaboche, 1985).

3.3. The dissipation power
According to the second law of thermodynamics, the total dissipation power with

convexity and normality properties is:

(13)

Within the hypotheses of uncoupling between mechanical and thermal dissipations and of
independence of energy dissipations between plastic flow and damage processes, eqn (l3)
can be separated into two parts such that:

- x!1-Bp ~ O.

(l4a)

(l4b)
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Equations (l4a) and (l4b) show that there exists a plastic dissipative potential and a
damage dissipative potential, i.e.

(15)

(16)

in which the former represents the plastic yield criterion; the latter is the damage evolution
criterion. In case the criteria Fp = 0 and Fd = 0 are satisfied, the actual values of Q:, R, X, B
will make the dissipation power of eqn (13) a stationary value.

If we introduce Lagrange multipliers Jcp and Ad eqn (13) can be written:

ll> = (J 8 - R&. - Y D- Bp' - AF - AdFd •
_::p -- P P

Thus we have:

oll> . oFp
-=O=&'=-A-oR p oR
oll> . . oFd
-=O=D=-A­OY - d oY

4. FULLY COUPLED ANISOTROPIC ELASTO-VISCO-PLASTIC DAMAGE MODEL

4.1. Anisotropic elasticity and damage
When a material is damaged, the constitutive relation is:

Comparison between eqns (lla) and (19), gives:

(17)

(18)

(19)

(20)

Since the elastic tensor ~e is symmetric, Qe is symmetric too. The elastic tensor ~e may be
represented by a 6 x 6 matrix. For orthotropic materials:

V21 V31
0 0 0

£1 £2 £3

VI2 I V3Z

£1 £Z £3
0 0 0

VI3 V Z3
0 0 0

f;l =
£] £Z £3

(21)

0 0 0 0 0
GZ3

0 0 0 0 0
G31

0 0 0 0 0
G IZ

with
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Thus, ~e is:

(22)

c =
~e

where:

E 1(1- V32 v 23 )

Llc

E 1(v21 +VZ 3V31)

Llc

E I (V31 +V21 V3Z)

LlL'

o
o
o

EZ(Vll +V 13 V32)

LlL'

E Z(1-VI3 V31)

Llc

E Z(V3Z +V12 V31)

Llc

o
o
o

E 3(V13 +V12 VZ3)

Llc

E 3(vZ3 +V1I V13)

Llc

E 3 (1- V21 V12)

Llc

o
o
o

0 0 0

0 0 0

0 0 0

G23 0 0

0 G31 0

0 0 G12

(23)

Because of symmetric properties, we have the following relations from eqn (22) :

E 1(V21 +VZ 3V31 ) = EZ(v IZ +v 13 v3z ),E1(V 31 +v21 v 32 ) = E 3(V 13 +V1ZV13)

E z (V 32 + V12 V31 ) = E 3(VZ3 + V21 VI3). (24)

In order to guarantee the positive definiteness of Q" the following conditions should be
satisfied

0< Llc ~ I, 0 < I-vijvji ~ I (nosumoni, i), 0 ~ D i < 1

GZ3 > 0, G31 > 0, GIZ > 0, E I > 0, E z > 0, E 3 > o. (25)

4.2. Anisotropic plastic yield surface
In the damage characterization of materials undergoing large plastic deformations,

Hill's yield criterion in stress space is expressed in the following form :

where Ro is the initial strain hardening threshold.
The effective equivalent stress itF is:

- _ {! - T H -} I/Z _ {! TH- }I/Z
(IF - z~ _~ - z~ _~ .

The effective plastic characteristic tensor fl is given by:

(26)

(27)

(28)

The positive definite tensor H for orthotropic materials is represented by a 6 x 6 matrix as
in the material principal coordinate system (Hill, 1950).
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G+H -H -G 0 0 0

-H H+F -F 0 0 0

-G -F F+G 0 0 0
(29)H=

0 0 0 N 0 0

0 0 0 0 L 0

0 0 0 0 0 M

where F, G, H, L, M, N are parameters characterizing the current state of plastic anisotropy.
For a strain-hardening material, the uniaxial yield stress varies with increasing plastic
deformation, and therefore the anisotropic parameters should also vary, since they are
functions of the current yield stress (see Valliappan et al., 1976). The consistency between
the general thermodynamic framework and treatment of anisotropic hardening require
tensor H being a state variable. However, this will make the solution very complicated.
Since we work with weak degree of anisotropy, H in plastic flow rule eqn (30) could be
treated as constant tensor.

The plastic constitutive equations incorporating material damage may be derived by
taking the yield criterion [eqn (26)] as a potential function. By assuming an associated flow
rule, the rate-independent damage plastic response is characterized as follows:

1

. ,oFp M H M ~ i
e =A-=----A
-p p ocr 2a-F p

(plaShC flow rule)

1

. . dR
R = lep do:

(isotropic hardening rule)

{
Fp ~ 0, Ap ~ 0, ),pFp = 0
(plastic loading/unloading rule) .

(30)

(31)

(32)

4.3. Damage evolution law and damage surface

4.3.1. Damage evolution surface. In a similar way to the arguments leading to plastic
dissipative potential, one can assume that there exists a surface Fd = 0, which separates
the damaging domain from the undamaging domain. A damage criterion in a quadratic
homogeneous function of the damage energy release rate X was proposed as (Cordebois
and Sidoroff, 1979, 1982 and 1983) :

(33)

where the equivalent damage energy release rate Yeq is defined by :

(34)

in which 1 is the damage characteristic tensor.

4.3.2. Damage characteristic tensor I. One remaining parameter yet to be defined in
eqn (34) is the damage characteristic tensor {. Normally, 1 seems to be a fourth order
tensor [as H in eqn (27)]. However, since we work on the principal coordinate system of
damage as Y I2 = Y23 = Y31 = 0, it can be treated like a second order tensor. Furthermore,
this tensor can be assumed to be symmetric; the operator in its general form has six
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independent components. Such a tensor will render the formulation of the constitutive
equations too complicated for general engineering applications for which simplifications
become necessary.

The determination of a suitable damage characteristic tensor l, which is simple enough
to be applied and yet describes accurately the nonlinear nature of damage growth, may
well be the most important aspect in the present formulation of anisotropic damage evol­
ution law.

The purpose of introducing a damage characteristic tensor l, like the introduction of
plastic characteristic tensor H in the theory of plasticity, is to take account of the anisotropic
nature of damage growth.

(1) In order to retain eqn (34), it must be a positive semi-definite tensor.
(2) In order to satisfy the thermodynamic condition Q ~ 0 [see eqn (45)] each term

D i (i = 1,2,3) must positive for all loading spectrums, hence

(35)

(3) Next, it must reduce to a scalar equation when the damage response is isotropic
and represented by D] = D 2 = D 3•

(4) Furthermore, the components of l are generally not material constants (Lu and
Chow 1990).
Since the several existing formulations of l are of a more or less simplified nature, a new
form of l which satisfies the above requirements will be proposed and its physical impli­
cations clarified. The damage characteristic tensor l in the Cordebois-Sidoroff model was
expressed as :

where p is a material constant. It reduces to a scalar equation, only if p = I.
Lee et al. (1985) proposed to use the following form of l:

[

I P fl]
{= fl 1 fl

fl P 1

(36)

(37)

to describe anisotropic damage evolution. However, their assumption that fl is a material
constant is not realistic (Lu and Chow, 1990).

Recently, Chow and Lu (l989a) proposed the following generalized expression for l:

(38)

which has only one unknown parameter to be determined from a standard tensile test:

(39)

However, it is only suited for the case when the virgin material properties are isotropic. A
new damage characteristic tensor l, similar to the plastic characteristic tensor H in the
theory of plasticity, with more general properties and more rational physical significance
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than the previous formulation due to (Cordebois, 1983; Lee et al., 1985; Chow and Lu,
1989a) is proposed on the basis of the damage energy equivalence:

(40)

In the case of damage hardening materials, the equivalent damage energy release rate
increases with increasing total damage growth, and hence, the anisotropic parameters in
eqn (40) should also vary. The change in the equivalent energy release rate in any component
depends on the total amount of damage work done in that component. For an equivalent
variation, the damage work done in each component should be the same. For the case of a
linear damage hardening as shown in Fig. 1, the damage work in component 1 is:

Similarly the damage work done in terms of equivalent damage energy release rate Yeq is:

(42)

By equating eqns (41) and (42), we have:

(43a)

Similarly:

(43b)

(43c)

damage work

Obviously, if component 1 coincides with the reference component, Bo = Y IO , B (/3) = Y1­

Y IO , a l = 1 and

y

D
1

D eq
damage variable

Fig. I. Equating damage work.
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YiJ 2 = a2 = ----------
(DtZiDtd(Y;- no) + Y~o

YiJ 3 = a3 = ----------
(Dt3 /Dt1 )(Y;- Y;o)+ Y~o

1617

(44)

In the above equations, D ti are the slopes of Yi-Di curves with component i; Y j the
current equivalent damage energy release rate corresponding to component i; Y iO the initial
equivalent damage energy release rate corresponding to component i.

Obviously, the damage characteristic tensor l in eqn (40) with the parameters in eqn
(44) satisfy the four requirements mentioned above.l may be handled as a constant tensor
in the damage evolution rule [eqn (45)], similar to the discussion in Section 4.2. for tensor
H, in order to avoid complex derivation. This treatment may violate the thermodynamic
consistency. However, comparisons between simulation and experiment show that this
treatment gives interesting results.

4.3.3. Evolution law of anisotropic damage. In much the same way as the definition of
plastic flow, the evolution law of anisotropic damage is characterized below:

JY
with y* = --==­

2Yeq

(damage evolution rule)

(damage hardening rule)

(damage loading/unloading rule)

(45)

(46)

(47)

4.4. Constitutive relations for elastoplastic damage
According to the elastic constitutive relations [eqn (19)] and to the effective stress

tensor definition [eqn (1)], we have:

(48)

Noting the relations:

(49)

and:

(50)

with eqns (48,49,50, 19) the objective rate form of eqn (48) is:
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According to eqn (45), we have:

M = aM D= _ [OM .LXJ~d = A*~d
- aD- aD 2Y -_ _ eq

with:

aM lY
i* = - aD ;;.

_ eq

Substituting eqns (30) and (52) into eqn (51), we obtain:

where:

CeHMu
C*=- ---
- 2aF

thus:

v _ M-1 Y M-1 M - M- 1C M- 1. E*) F* ;
~ - _ ~- _ _~ - _ _e_ ~- _ 'p- _ Ad

in which:

F* = M- 1D*+M- 1A*u.
- - - - --

According to eqn (lId), we can write:

- Y = uT Z* U

where:

aM
z* = MC- 1 -==
- __e aD·

The rate of eqn (60) is:

(52)

(53)

(54)

(55)

(56)

(57)

(58)

(59)

(60)

(61)
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where [with eqn (45)]:

H* = -2(JT Z* E*

1619

(62)

(63)

(64)

(65)

Now, the fully coupled elastoplastic damage constitutive equations are summarized as
below:

~ = M- 1 C M- 1 e-E*A -F*Ad__ _ e p _

MHM(J

. . dR
R=A ­

P da:

- Y= 1* e+H*A + T* Ad
- - - - P -

lY
iJ = - --==- ~d
- 2 Yeq

(66)

4.5. Anisotropic microcrack opening and closing mechanisms
It is generally admitted that only tensile strains in the strain principal directions

contribute to microcrack growth, especially for various brittle materials. Simo and Ju
(l987a,b) and Ju (l989a,b) proposed an approach of spectral decomposition of the strain
tensor for their strain-based damage model (Simo and Ju, 1987a,b) and energy-based
damage model (Ju, 1989a,b), to consider different mechanisms under tensile and com­
pressive states.
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The treatment here is similar to the previous proposal of Simo and Ju, but with the
spectral decomposition of the stress tensor for our present energy-based damage model.

First, in view of the significance of tensile strains in damage processes, we propose the
following definition for the tensile stress tensor ~+. Consider the spectral decomposition of
the stress tensor:

3

(J = I (Ji t}2)!!.J' Ifil = I
i= 1

(67)

where (Ji is the i-th principal stress and Pi the i-th corresponding unit principal direction.
Let Q and Q+, separately, be the regular and positive (tensile) spectral projection tensors
defined as :-

3 3

Q = I f/2)fi; Q+ = I If ((JJ f/2)fi
i= 1 i= 1

(68)

where H(.) is the Heaviside step function. In addition, the fourth-order positive projection
tensor f+ is defined with components (see also Simo and Ju, 1987a),

(69)

so that the so-called tensile tensor Q+ can be expressed as:

(70)

With this notation at hand, the damage energy release rate X in eqn (60) can also be
modified as follows to accommodate "ductile" like and "brittle" like material damage.

(ductile-like damage)

(brittle-like damage)
(71)

Here, roughly speaking, "ductile-like damage" material means that in such materials, the
effects of compressive and tensile states are the same to damage growth; "brittle-like
damage" material means that only the tensile components contribute to the evolution of
damage in such materials. It should emphasized that the words "ductile-like damage" and
"brittle-like damage" are merely definitions for two types of damage growth and do not
imply an assumption on the ductility (capacity to have large strains before rupture) or the
brittleness of the material itself.

Furthermore, eqn (62) may be expressed in the form:

_1= 12",,,:~+",(a(~~).)~ (ductile-like damage) (72)

2~+T?* ~+ +~+T 8Q Q ~+ (brittle-like damage)

Obviously, for brittle-like damage, if all three principal strains (Ji are tensile, then the local
microcracks are active in all three principal directions. On the other hand, if all (Ji are
compressive, no growth of microcracks occurs under the current state. Clearly, other
combinations of tensile and compressive states will give rise to various microcrack "open­
ing" and "closing" situations.
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The above discussion on microcrack closure, eqns (67) to (70), is somehow similar to
the proposal of Ortiz (1985). There exist nevertheless two significant differences between
the two formulations:

(1) Ortiz's model only treats brittle materials.
(2) Ortiz's formulation focused on the rate of a so-called "added compliance tensor"

while the present proposal focuses on the damage evolution laws. It is emphasized that the
two procedures are not equivalent.

(3) The explicit form of the positive orthogonal projection tensor E+ in eqn (69) is a
nonlinear, non-constant operator associated with the current total stress tensor Q which is
more precise than that given in Ortiz's model (Ju, 1989a).

4.6. Extension to fully coupled elasto-visco-plastic damage model

4.6.1. Objective and background of this study. Material response behaviour under high
strain rates is needed for a range of current applications. Aircraft and vehicles are generally
subjected to impact loading which often brings failures and serious damages in their
components. It is well-known that strain rate, strain rate history and temperature effects
play an important part in stress~strain relations under high speed loading. Some existing
experimental results also show that the amount of microcracking (damage) at a particular
strain level exhibits rate sensitivity to the applied rate of loading in a (high strain rate)
dynamic environment (Simo and Ju, 1987a). On the other hand, it has long been recognized
that rate-independent constitutive laws are inadequate in the modelling of hot-forming
processes.

Hence, the necessity of using appropriate rate-dependent constitutive models, which
include the rate and rate-history effects, is obvious.

There are many viscoplastic models in the recent literature for dynamic material
behaviour at high strain rate. The important features of dynamic material behaviour such
as strain rate, strain rate history and temperature dependence were described with emphasis
on a comparison of theoretical and experiments results in a recent bibliographic research
(Zhu and Cescotto, 1992).

One of the simplest unified viscoplastic models was proposed by Perzyna (1971), under
multiaxial conditions. However, Perzyna's approach is generally not well suited for non­
smooth multi-surface rate-dependent plasticity models (Simo et al., 1988; Ju, 1990a). This
is due to the fact that, in the "corner regions" of non-smooth multi-surface plasticity
models, the family of nested viscoplastic loading surfaces (outside the static yield surface)
are neither clearly nor uniquely defined. Thus, the loading/unloading conditions may not
be appropriate for the Perzyna-type multi-surface viscoplasticity models (Simo et al., 1988).
In fact, as the viscosity parameter approaches zero, the Perzyna-type model would not
reduce to the rate independent plasticity formulation in the case of non-smooth multi­
surface modes.

To remedy this shortcoming, an alternative (non-equivalent) viscoplasticity for­
mulation was proposed by Duvaut and Lions (1972), and was recently further enhanced
by Simo et al. (1988) and Ju (1990a). It is noted that the Duvaut-Lions viscoplasticity
model does not utilize the concept of nested viscoplastic loading surfaces and thus precludes
the difficulty encountered by the Perzyna-type models in non-smooth corner regions.

There exists one plastic yield surface and a damage evolution surface in the present
elastoplastic damage model. Thus, non-smooth corner regions at the intersection of these
surfaces can be observed. Due to the same non-smooth corner phenomenon as in non­
smooth multisurface plasticity models, we will use the viscoplastic regularization of the
Duvaut~Lions type proposed by Ju and Simo et al. for the structure of the viscous reg­
ularization of the previously developed rate-independent elastoplastic damage model. The
resulting rate-sensitive elastoplastic damage model requires one additional material
parameter, i.e. the viscosity coefficient fl. As fl approaches zero it reduces to the rate
independent elastoplastic damage model, whereas as fl approaches infinity it exhibits instan­
taneous elastic response.
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Of course, with such a simple approach, complex viscous material behaviours cannot
be modelled with high precision. It must therefore be considered as a first and approximative
representation of the strain rate effects.

Another reason to use the viscous regularization in our rate-independent damage
model is to preserve the uniqueness of finite element solution (Benallal et al., 1991). It is
now well-known that there are unique well-posed numerical convergence problems in
computations associated with apparently "strain softening" material due to the loss of
ellipticity at the level of material constitutive equations. In fact, in viscous models, there
are no plastic and damage consistency conditions, thus no strain rate jumping phenomenon
(Benallal et al., 1991) and the numerical difficulties may be avoided (Loret and Prevost,
1990; Prevost and Loret, 1990).

4.6.2. Extension of the Duvaut-Lions model by Simo. The rate constitutive equations
of the Duvaut-Lions type viscoplasticity postulated by Simo et al. (1988) are:

1
q = - -(q-q*)

J.1 - -
(73)

where ~vp is the viscoplastic strain rate tensor, J.1 the viscosity coefficient, ~c the elasticity
tensor, Q: the current stress tensor, q a set of plastic variables, (Q:*, q*) the non-viscid solution
of the rate-independent elastoplastic problem, and Fp the static yield surface. With proper
loading/unloading conditions, the generalized Duvaut-Lions model renders a definite and
unique viscoplastic solution even in the corner regions. Clearly, the viscoplastic solution
should lie between "the elastic predictor" and the "non-viscid plastic solution".

Two unconditionally stable constitutive integration algorithms for the generalized
Duvaut-Lions viscoplasticity model were proposed by Simo et al. (1988), including the
implicit backward Euler and the "full integration" algorithms. For the sake of clarity and
simplicity, only the implicit backward Euler algorithm is used in our present model although
it is a first order accurate implicit integration algorithm.

By multiplying eqn (73) by I1tn (= tn + 1 - tn ) :

(74)

where the subscript n+ 1 signifies the current time step. Further, the elastic strain is:

(75)

where Q:n is the converged stress value at the last time step t no By rearranging terms in eqn
(74), we obtain the following rate-independent solution:

~n+1

1+l1tn /J.1
(76)

in which qn is the converged value of q from the last time step tn' It is noted that the term
[Q:n + ~e: l1~n+ I] is actually the elastic predictor stress ~~~).
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It is observed that !1.tn/ /l is the key factor for controlling rate and viscosity effects (see
Fig. 2). As !1.t,j11 approaches zero the elastic response is recovered from eqn (76) :

(77a)

On the other hand, as !1.t,,//l approaches infinity the non-viscid plasticity is obtained:

(77b)

It should be realized that the above integration algorithm is unconditionally stable with
respect to the time increment /!,.tn• This is certainly favourable in implicit finite element
computations. However, it is only a first order accurate algorithm. In order to improve
accuracy, the subincremental technique can be used.

It is also noted that, in the above derivation, the Jaumann stress rate modification is
not taken into account. In fact it can be involved in the "elastic predictor", that is:

~n+l --l-+-/!"-t-n/-/l-- qn+ 1

Cjn + !1.tn / /l q~+ 1

1+!1.tn /1l
(78)

in which the expressions of ~~~ 1, l'~~ 1 are given in the next section.

5. COMPUTATION ALGORITHM FOR ANISOTROPIC DAMAGE MODEL

5.1. Transformation between material principal axes and reference axes
In a nonlinear finite element analysis, the contitutive equations of the material have to

be integrated locally at each time step. If stresses, state variables, etc ... are expressed in
global coordinates, at the beginning of each new step n + I, they first be transferred to the
principal axes of anisotropy using the classical rules of coordinates transformations. Then,
the constitutive relation developed above can be used directly. At the end of the step, the
results have to be transferred back to the global coordinates.

5.2. Operator splitting methodology
The return mapping algorithm has been used for the integration of elastoplastic

constitutive relations. However, the classical integration rule which is in fact particular
cases of the trapezoidal and midpoint rule is restricted to the simple plasticity model. For
complex models, Simo and Ortiz (1984) proposed a new class of return mapping algorithms
with the operator splitting methodology. General elastoplastic behaviour, with plastic
hardening or softening, associated or non-associated flow rules and nonlinear elastic
response can be efficiently treated with this algorithm. Recently, BenaUal and Billardon

At)
II 3

a
elastic I
~ -.. 0 (At)
II II 1

elastoplastic damage
At -+ 00

II

(At) > (At) > (At)
113 11 2 III

L- ~€

Fig. 2. Range of e1asto-viscoplastic behavior.
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elastic predictor

-----~

Fp=O (plastic s ace)

Jg) plastic-damage
~ corrector

Fig. 3. Elastic predictor/plastic-damage corrector.

(1988), Simo and Ju (1987b) applied this operator splitting methodology to their ela­
stoplastic damage models. Although plasticity and damage are coupled in rate equations,
the algorithmic treatments uncouples plasticity and damage, because as soon as the plasticity
is corrected, all the damage variables are fixed. In this paper, we propose a fully coupled
integration scheme with a two-step (elastic predictor and coupled plastic-damage) corrector.
In our model, there exists two coupled surfaces, and for each iteration, the plastic surface
and damage surface should be corrected together (see Fig. 3). The computational aspect
described in detail can be found in (Zhu, 1992, chapter 6). The different steps of the
integration algorithm are detailed below.

5.2.1. Two step operator split. The two step operator is shown in Table 2.

5.2.2. Elastic predictor. (a) Strain update

(b) Elastic trial stress

Table 2. Operator split

Elastic part

1::, = 0

&=0

p=o

Plastic-damage part

o

lY .
--Ad

2Y,.q

dB.
df3 Ad

-§*).p-[*l"
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5.2.3. Plastic-damage corrector. (c) Check for plastic yield and damage evolution

(d) Plastic-damage return mapping corrector
According to the formulae:

8F

J
U) dBJ(I)U) d (I) , (I) ~

(Fd)n+1 + 8Y ~Xn+1 - dfJ (~Ad)n+1 ~ 0
_ n+1 n+1

and noting (54), (62), we can obtain:

1625

(79)

a22 (Fp)~~ 1-a12 (Fd)~i~ I

a ll a22 -a12 a21

all (Fd)~~ I - an (Fp)~~ I

all a22 -a12 a21

(80)

in which:

~~!Jif* dR

2 + d N
(tF '"

(JMH
al2 = -2- - D*

(JF -

YJH*
a21=~

eq

X.£!* dB
a22 =~+ dfJ'

eq

(81)

Computationally, the only modification needed to take account of the anisotropic mic­
rocrack opening mechanism for "brittle" damage now is the addition of an eigenvalue
calculation to compute the positive (tensile) projection of the stress tensor. Then, the
stresses used in X, Yeq, al2, a2b an are replaced by the tensile stresses.
(e) Update stresses and state variables

[d J
o

U+I)_ (I) ~,I
R n+ l - R n+ 1 + d ~/,p

r:x n+ 1

[

JY J(I)
D(i+l) = D(I) - -==-~A_n...-l _n+1 2Y d

eq n+ 1
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[d J
o

(I+ll_ (i) ~,'
Bn+, -Bn+1 + dp!1Ad n+]'

Set up i <- i+ 1, and go back to (c)

5.3. Viscous regularization
(f) Visco-plastic-damage corrector

£!:n+ 1 = --I-+-!1-t
n
-I/1-­

qX'/.] +!1tnl/1qX:l l

qn+l =

5.4. Evaluation of the incremental compliance matrix ~ by perturbation technique
The incremental compliance matrix ~ can be defined by:

iJ=CL. (82)

It is well-known that ~ plays an important part in computing the global stiffness matrix
(see chapter 2 of Zhu, 1992). There exist three approaches to evaluate the incremental
compliance matrix ~: the continuum tangent operator, the consistent tangent operator and
the numerical perturbation technique.

It was Cescotto and Charlier (1985) who first proposed a numerical perturbation
technique to evaluate matrix ~ for their own elasto-visco-plastic model. Because of its
simplicity and its generality, the perturbation technique has been applied to various consti­
tutive laws (Zhu, 1992). Kojic and Bathe (1987) also presented, independently, this
approach to compute matrix ~ for thermo-elasto-plasticity and creep model in ADINA.
The main drawback is that the computational cost is slightly more expensive by this
approach than by the other two approaches.

The incremental compliance matrix ~ corresponding to the stress-strain state at the
end of the time (loading) step from tn to tn+" is defined by:

~n+1
8£!:n+,

8(!::!1t)n+ 1 •
(83)

The simplest way to compute the above derivative is to use a numerical perturbation
technique; each component of (~!1t)n+1 is successively given in a small increment (j and the
corresponding increments of@,,+, -Qn+ I) are computed by the chosen integration scheme.
This allows the construction of~ column by column. The computational procedure consists
of the following steps.

(g) Form the j-th perturbed vector

(L!1t)(j) = (L!1t) +(j(j)_ n+l _ n+l

go to (a) for evaluating aY~ I'

(h) Compute the stress perturbation vector

(i) Compute the column vector
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(no sum on}).

(j) If j < I (I is the dimension of matrix ~) then set up} +-}+ I, go to (g).
(k) Compose matrix ~

(I) End of integration of anisotropic constitutive law.

6, NUMERICAL RESULTS AND DISCUSSIONS
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The sheet forming processes are widely used in the automotive industry for the pro­
duction of car body components. In these processes, the forming limit is governed by plastic
instability and fracture following the damage growth. Several material aspects may be
considered including: initial and induced anisotropy, hardening, softening, temperature, as
well as friction between sheet and tools. Good representation of sheet behaviour will be
essential to predict and avoid defects (necking, fracture, wrinkling). Hereafter, the present
anisotropic damage model is applied to sheet forming simulation, As illustrative examples,
hemispherical punch stretching including heat transfer and deep drawing by cylindrical and
square punches are simulated,

All the numerical simulations are carried out by mixed finite elements developed in
Chapter 4 of (Zhu, 1992), We use the following notations: "BLZ2D-n" denotes the 4-node
quadrilateral solid with n-point quadrature; "BLZ3D-n" denotes the 8-node hexahedral
solid element with n-point quadrature; "BLZ2T-n" and "BLZ3T-n" are the corresponding
thermal-mechanical elements.

6.1. Non-isothermal hemispherical punch stretching
This example corresponds to a benchmark test for the numerical simulation of sheet

forming processes (Kim and Wagoner, 1991), The current study is aimed at developing
a reliable anisotropic damage model and efficient numerical method to solve coupled
thermoplasticity and damage problems related to sheet-forming processes. To avoid
unnecessary complexity, attention is restricted to temperature-independent material proper­
ties. The introduction of temperature dependent material properties, leading to additional
coupling terms, does not present fundamental difficulties.

Figure 4(a) shows the geometry of the hemispherical punch and circular die as well as
the axisymmetric sheet. The finite element discretization consists of 100 axisymmetric 4­
node mixed elements (BLZ2T-2) with 50 along the sheet and two across the thickness. The
clamping at the outer perimeter is assumed to be perfect so that the displacements at these
nodes are prescribed to be zero. The material properties of the specimen are those listed in
Table 3. It is emphasized that the sheet is isotropic in its plane but anisotropic in the
thickness direction (direction 2).

The punch and die are isothermal with environmental temperature 298K, the sheet is
heated initially to 348K. The heat transfer to tool and air and internal heat conduction in
sheet are considered. A constant punch velocity of 40 mm/s is chosen in the whole simu­
lation. The contact problem and heat transfer on the sheet surface are treated by axi­
symmetric contact elements (Cescotto and Charlier, 1993). The initial and deformed shapes
of the sheet are shown in Fig. 4.

The distributions of equivalent stress, damage and temperature for the sheet after a
punch displacement of 40 mm are shown in Fig. 5. The punch force versus punch depth is
shown in Fig. 6. Figure 7 (a--c) shows the distributions of equivalent stress, strain and
damage along the original radial position for a punch depth of 40 mm.

In Figs 5-8, comparison of anisotropy with and without friction is given. Higher punch
force is predicted for the anisotropy with friction case, As expected, when the friction
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Fig. 4. Initial and deformed configuration.

Table 3. Material properties of sheet

Young's modulus (MPa)
Poisson's ratio
Initial yield stress (MPa)

Elastoplastic tangent modulus (MPa)

Initial damage energy release rate (MPa)

Damage hardening (MPa)

Mass density (kg/m')
Thermal expansion coefficient (K - ')
Taylor-Quinney's coefficient
Heat capacity N/(m' K)
Conductivity N/(S K)
Heat radiation coefficient (N/(ms K4

)

Heat transfer coefficient (N/(ms K)
Thermal resistance coefficient (N/(ms K)
Penalty coefficient (N/m')
Coulomb friction coefficient

E I = E, = E, = 2.068 x lOs
V12 = V2I = V2J = V32 = VJl = VIJ = 0.285
O'ly = 0'3, = 170.3
0'" = 170.3 (for isotropy) 201.5 (for anisotropy)
E'I = E'3 = 340.4
EI2 = 340.4 (for isotropy) 402.8 (for anisotropy)
G'12 = G\'23 = 113.5
Gll J = I i3.5 (for isotropy) 134.3 (for anisotropy)
YlO = Y,o = 0.2
Y,o = 0.2 (for isotropy) 2 (for anisotropy)
Dll = D'3 = 10
DI2 = 10 (for isotropy) 100 (for anisotropy)
p = 7800
iX, = iX, = iX, = 1.2 x IO- s

'1 = 0.9
pC" = 3.77 X 106

Al = A, = ,13 = 36
0', E, = 8.5 X 10- 9

h, = 2.95
h =4x103

Kp = K, = 1.0 X 1012

</> = 0 (without friction) O. I7 (with friction)
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punch depth = 10 mm punch depth =20 mm

16 punch depth = 26 mm punch depth =30 mm

Fig. 16. Deep drawing ofa square cup from a circular blank. Distribution patterns of the equivalent
plastic strain and deformed configurations.

Fig. 17. Photographs of the square cup at different stages of the drawing process.
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Fig. 6. Punch force versus punch depth.
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coefficient increases, the sheet becomes stiffer. In our simulation we find that as the friction
between the sheet and tool is decreased or the anisotropy degree is reduced, the peak stress,
strain, damage and temperature move towards the center of the sheet and the peak values
are increased. In the case of isotropy without friction, the peak values locate near the center
of the sheet and the equivalent damage is three times higher than that in the case of
anisotropy with friction. Therefore, for sheet metal forming problems, it may be necessary
to introduce the effects of initial and current anisotropy.

In Fig. 8, the radial strain distributions along the original radial position are shown
for the cases: (a) anisotropy with friction at a punch depth of 40 mm, (b) anisotropy with
friction at a punch depth of 35 mm, (c) isotropy without friction at a punch depth of 40
mm. In the same figure, other previous experimental results (Ghosh and Hecker, 1975) and
theoretical results (Wang and Budiansky, 1978) are also plotted. These results are relevant
to a punch depth between 35 mm and 38 mm. Good agreement can be found between our
anisotropic results and other investigator's results.

6.2. Deep drawing ofan axisymmetric cup
In the deep drawing process the sheet is not fixed at the boundary but is allowed to

move between die and blankholder. From a numerical point of view, deep drawing is a
more difficult problem to handle than stretch forming because the relative displacements
between the sheet and the tools are large. The interaction between sheet, die and blankholder
is the most critical aspect of the process. Various aspects of this problem have been treated
abundantly in the literature (Saran and Samuelsson, 1990a,b; Garino and Oliver, 1992).

The geometry of this axisymmetric deep drawing by a cylindrical punch is defined in
Fig. 9. The material properties of the sheet are listed in Table 4. Normally, deep drawing
is performed with a blankholder force of 54.445 kN defined as the total force acting on
blankholder and perpendicular to the cup flange. For the sake of simplicity, it was assumed
that the distance between blankholder and die is fixed to the initial sheet thickness and the
blankholder force is replaced by a radial resistance force of2.6 kN ( = 2 x 0.15 x 54.445/2n)
acting on the outer perimeter of the cup flange. The cup flange restrains some of the radial
deformation and increases the stretching, but the effects are not major.

The deformed shapes of the cup at various stages of the drawing process are shown in
Fig. 10. A uniformly spaced mesh of 50 elements along the sheet and two elements across
the thickness is used. Consequently 100 BLZ2D-4 elements are utilized. The resulting cup
at a punch depth of 60 mm is depicted in Fig. 9 (for clarity, a partial view is given).

The distributions of equivalent stress and damage at punch depths of 30 mm and 60
mm are shown in Fig. 10. The peak stress appears near the corner of the die (the die contact
region); while the higher level of damage locates near the punch corner (the punch contact
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Fig. 7. Radial distribution of quantities along the original radial position for a punch depth of
40mm.

region) and near the outside bottom of cup. Figure II shows the punch force as a function
of the punch depth. Three results are given:

(a) theoretical prediction with anisotropic damage model;
(b) theoretical prediction in the case of isotropy;
(c) experimental investigation (Bruneel and De Mare, 1990).
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Table 4. Material properties of sheet

Young's modulus (MPa)
Poisson's ratio
Initial yield stress (MPa)

Elastoplastic tangent modulus (MPa)

Initial damage energy release rate (MPa)

Damage hardening (MPa)

Penalty coefficient (Njm3
)

Coulomb friction coefficient

E, = E2 = E3 = 2.1 X 105

V12 = V 21 = V23 = V32 = V31 = V13 = 0.3
0", ,. = 0"31' = 330.0
0"2,' = 330.0 (for isotropy) 495.0 (for anisotropy)
Ell = E '3 = 210.0
E'2 = 210.0 (for isotropy) 315.0 (for anisotropy)
G'12 = G'23 = 70.0
Gill = 70.0 (for isotropy) 105.0 (for anisotropy)
YIO = Y30 = 0.7
Y,o = 0.7 (for isotropy) 2.5 (for anisotropy)
D'1 = D'3 = 20.0
D'2 = 20.0 (for isotropy) 100.0 (for anisotropy)
K = K = 3 X 10"
l= 0.15
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--f----~---------~-mm
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Fig. II. Comparison of theoretical and experimental results for punch force versus punch depth.

There is good agreement between experimental results and calculations with the
anisotropic damage model. However, a necking defect near the punch corner is obtained
in the numerical simulation if the material is initially and currently isotropic as shown in
Fig. 12. In this case, the punch force drops quickly (Fig. II), and the numerical simulation
looses stability. This necking phenomenon was also encountered by other investigators
(Garino and Oliver, 1992).

6.3. Deep drawing ofa square cup from a circular blank
Deep drawing of a square cup is one of the basic tests among the asy'mmetrical deep

drawing processes and represents typical deformation mechanisms ofother similar processes
(Kobayashi et al., 1989; Yang et al., 1990; Rebelo et al., 1990; Guo et al., 1990). As a first
attempt to handle more complex sheet operations and as a test of the present theories, this
case is simulated.

This example is similar to the previous one. The same material and interface (friction)
behaviours are used. Figure 13 shows a schematic view of a square cup drawing process.
The blank has an original circular shape. The die is fixed and the punch has only vertical
displacement with a constant velocity. Deep drawing is performed by imposing prescribed
blankholder forces, which are perpendicular to the cup flange and allow thickening of the
sheet. The vertical displacement of the blankholder is controlled by vertical equilibrium.
The interaction of tools (punch, die, blankholder) with the sheet is crucial to the deep
drawing process, since the friction conditions have a strong influence on the material flow,
the load in the walls and the punch force.

The material and process variables used in the simulation are listed in Table 5.
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Table 5. The material and process variables

Initial radius of sheet blank R,
Initial sheet thickness t
Punch size a
Punch radius Rp

Punch corner radius Ra

Die opening b
Die radius Rd

Die corner radius Rh

Blankholder opening c
Blankholder radius R,
Blankholder corner radius R,

Punch vertical velocity Vp

Blankholding force P

Penalty coefficient Kp , K,
Friction coefficient 4>

42.5 mm
0.8mm
40x40mm
4.5mm
IOmm
41.92 x 41.92 mm
3mm
10.96mm
41.3 x 41.3 mm
42.5mm
Ilmm

I mm/s

IOKN

3 X 10" N/m3

0.15
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Fig. 14. FEM meshes of sheet and tools.

The analysis proceeds in two steps, corresponding to the phases of the deep drawing
process itself. First, a force of 10 kN is applied to the blankholder. This force creates an
initial pressure distribution between blankholder, sheet and die. Next the punch is moved
to a total depth of 30 mm. Near a punch depth of 25 mm, the load on the blankholder is
removed to demonstrate the unloading procedure.

The FEM meshes that are used in the square cup drawing simulation are shown in
Fig. 14. Owing to symmetry only one quarter is modelled. The tools are discritized by
triangular rigid elements and the sheet is modelled by 218 BLZ3D-8 mixed elements. One
element through the thickness is used.

Clearly, during the sheet forming process both sides of the sheet will be in contact with
the tools. Sometimes, there is a severe gradient of stress throughout the thickness of the
material. On one side of the thickness the stress is tension and on the other side it is either
compression or a reduced level of tension (Kobayashi et al., 1989). The URI (uniform
reduced integration) scheme 3D solid elements with one layer through the thickness and
even some kinds of shell element are unable to simulate this accurately, because they cannot
accommodate the thickness stress (Rebelo et al., 1990; Wertheimer, 1991). For inelastic
calculations, we know that more integration points through the thickness provide a more
accurate solution. An economical treatment in this case is to use a single layer of solid
elements with hourglass and locking controls-BLZ3D-4 and BLZ3D-8, which have been
developed in Chapter 4 of (Zhu, 1(92), including good shear and bending behaviours.
These provide the advantages of some shell elements and are directly applicable to two­
surface contact conditions. Here, the results of BLZ3D-8 are given.

The punch force over the punch depth is shown in Fig. 15. Figure 16 shows distribution
patterns of the equivalent plastic strain and deformed mesh configurations at various stages
of the drawing process. It can be seen that for the square cup, the maximum equivalent
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plastic strain in particular is concentrated at the corner wall near the die shoulder. This is
the place where failure is most likely to occur.

In Fig. 17, photographs of the square cup at different stages of the drawing process
are shown. The crack appears at the corner of the cup. This confirms the theoretical
prediction.

7. CONCLUSIONS

An energy-based anisotropic elasto-visco-plastic damage model at finite strain has
been presented in this paper to characterize progressive damage and crack growth. The
constitutive model is developed within the general framework of continuum ther­
modynamics for irreversible processes by identifying a proper set of internal variables
together with their conjugate generalized forces. The proposed framework is capable of
accommodating general nonlinear elastoplastic response, the coupling of damage and
plasticity, damage threshold, anisotropic microcrack opening and closing. The evolution
laws of anisotropic damage are developed by adopting the damage surface concept as well
as the principle of maximum damage dissipation. The material anisotropy is considered for
elastic, plastic and damage response: in the elastic regime, by introducing the appropriate
elastic constants in the elastic compliance matrix; in plasticity by using material anisotropy
parameters in Hill's yield function; in the damage regime, by introducing a new damage
characteristic tensor I in the damage evolution law, which can be conveniently determined
by equivalence of damage work. Throughout the discussion, the concept of energy plays a
very important role not only in deriving the damage effect tensor M (/2), the damage
characteristic tensor I and the effective plastic characteristic tensor H, but also in estab­
lishing the plastic evolution law and the damage evolution law.

Another essential purpose of the present work is to demonstrate that the anisotropic
damage model is suitable for large-scale computation. In particular, use of the operator
splitting methodology leads to a two-step integration algorithm including an elastic pre­
dictor and a coupled plastic-damage corrector. Thus the developed model of anisotropic
damage growth can be easily implemented in existing finite element programs to solve
practical engineering problems.

Numerical examples are also given to illustrate the potential applicability of the
proposed model, such as a typical industrial application ofsheet metal forming. Comparison
of results for isotropic and anisotropic situations illustrates significant differences in struc­
tural response. Thus in sheet forming problems where anisotropic conditions are invariably
encountered, it is essential to adopt the anisotropic damage model.
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